Probability and Measure 2021-2022 Exam 1 Solutions

- 1. Let A be a set in the Borel σ -algebra of \mathbb{R} .
 - (a) Prove that the function $F : \mathbb{R} \to \mathbb{R}$ defined by $F(x) = m(A \cap (-\infty, x])$ is continuous (*m* denotes Lebesgue measure).
 - (b) Assume that A has positive Lebesgue measure. Prove that for every $\delta > 0$, there exists $x \in \mathbb{R}$ such that $m(A \cap (x, x + \delta)) > 0$.

Solution.

(a) For any $x \in \mathbb{R}$ and s > 0 we have

$$F(x+s) - F(x) = m(A \cap (-\infty, x+s]) - m(A \cap (-\infty, x]) = m(A \cap (x, x+s]) \le m((x, x+s]) = s,$$

so F is Lipschitz continuous, so it is continuous.

(b) Fix $\delta > 0$. If we had $m(A \cap (x, x + \delta)) = 0$ for all x, we would have

$$m(A) \le \sum_{k \in \frac{\delta}{2}\mathbb{Z}} m(A \cap (k, k+\delta)) = 0,$$

so m(A) = 0, contradicting the assumption that m(A) > 0.

2. Let $f : \mathbb{R}^d \to \mathbb{R}$ be an integrable function (with respect to the measure space $(\mathbb{R}^d, \mathcal{B}^d, m)$). Let E_1, E_2, \ldots be Borel subsets of \mathbb{R}^d with the property that every $x \in \mathbb{R}^d$ belongs to at most finitely many of these sets. Prove that

$$\lim_{n \to \infty} \int_{E_n} f \, \mathrm{d}m = 0$$

Solution. The assumption implies that the functions $f_n := f \cdot \mathbb{1}_{E_n}$ converge to zero pointwise. Moreover, these functions satisfy $|f_n| \leq |f|$. Since $\int_{\mathbb{R}^d} |f| dm < \infty$, the Dominated Convergence Theorem implies that

$$\int_{E_n} f \, \mathrm{d}m = \int_{\mathbb{R}^d} f_n \, \mathrm{d}m \xrightarrow{n \to \infty} 0.$$

3. Let $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$ be measurable spaces. Assume that \mathcal{F}_2 is the trivial σ -algebra, that is, $\mathcal{F}_2 = \{\Omega_2, \emptyset\}$. Prove that if $f : \Omega_1 \times \Omega_2 \to \mathbb{R}$ is $(\mathcal{F}_1 \otimes \mathcal{F}_2, \mathcal{B})$ -measurable, then $f(\omega_1, \omega_2)$ does not depend on ω_2 (that is, $f(\omega_1, \omega_2) = f(\omega_1, \omega'_2)$ for all $\omega_1, \omega_2, \omega'_2$.

Solution. If the statement were false, there would exist $\omega_1 \in \Omega_1$ and $\omega_2, \omega'_2 \in \Omega_2$ such that $f(\omega_1, \omega_2) \neq f(\omega_1, \omega'_2)$. Letting $x := f(\omega_1, \omega_2)$, this would imply that $\omega_2 \in (f_{\omega_1})^{-1}(\{x\})$, and $\omega'_2 \notin (f_{\omega_1})^{-1}(\{x\})$. In particular $(f_{\omega_1})^{-1}(\{x\}) \neq \emptyset$ and $(f_{\omega_1})^{-1}(\{x\}) \neq \Omega_2$, so $(f_{\omega_1})^{-1}(\{x\}) \notin \mathcal{F}_2$. This implies that f_{ω_1} is not $(\mathcal{F}_2, \mathcal{B})$ -measurable, which is a contradiction because f is $(\mathcal{F}_1 \otimes \mathcal{F}_2, \mathcal{B})$ -measurable and sections of measurable functions are measurable.

4. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Give the definition of the set $\mathcal{L}^{\infty}(\Omega, \mathcal{A}, \mu)$, of the semi-norm $\|\cdot\|_{\infty}$ and of the set $L^{\infty}(\Omega, \mathcal{A}, \mu)$.

Solution.

 $\mathcal{L}^{\infty}(\Omega, \mathcal{A}, \mu) := \{ f : \Omega \to \mathbb{R} : f \text{ is measurable and there exists } C < \infty \text{ such that } |f| \le C \text{ almost everywhere} \}.$

For each $f \in \mathcal{L}^{\infty}(\Omega, \mathcal{A}, \mu)$, we let $||f||_{\infty} := \inf\{C : |f| \leq C \text{ almost everywhere}\}$. Finally, $L^{\infty}(\Omega, \mathcal{A}, \mu)$ is defined as the quotient space $\mathcal{L}^{\infty}(\Omega, \mathcal{A}, \mu)/\mathcal{N}$, where \mathcal{N} is the set of functions f with $||f||_{\infty} = 0$.